Topological Residuated Lattices
نویسندگان
چکیده
In this paper, we study the separtion axioms T0, T1, T2 and T5/2 on topological and semitopological residuated lattices and we show that they are equivalent on topological residuated lattices. Then we prove that for every infinite cardinal number α, there exists at least one nontrivial Hausdorff topological residuated lattice of cardinality α. In the follows, we obtain some conditions on (semi) topological residuated lattices under which this spaces will convert into regular and normal spaces. Finally by using of regularity and normality, we convert (semi)topological residuated lattices into metrizable topological residuated lattices.
منابع مشابه
Topological Residuated Lattices
In this paper, we study the separtion axioms $T_0,T_1,T_2$ and $T_{5/2}$ on topological and semitopological residuated lattices and we show that they are equivalent on topological residuated lattices. Then we prove that for every infinite cardinal number $alpha$, there exists at least one nontrivial Hausdorff topological residuated lattice of cardinality $alpha$. In the follows, we obtain some ...
متن کاملIndependent definition of reticulations on residuated lattices
A notion of reticulation which provides topological properties on algebras has introduced on commutative rings in 1980 by Simmons in [5]. For a given commutative ring A, a pair (L, λ) of a bounded distributive lattice and a mapping λ : A → L satisfying some conditions is called a reticulation on A, and the map λ gives a homeomorphism between the topological space Spec(A) consisting of prime fil...
متن کاملRegularity in residuated lattices
In this paper, we study residuated lattices in order to give new characterizations for dense, regular and Boolean elements in residuated lattices and investigate special residuated lattices in order to obtain new characterizations for the directly indecomposable subvariety of Stonean residuated lattices. Free algebra in varieties of Stonean residuated lattices is constructed. We introduce in re...
متن کاملTopological Duality and Algebraic Completions
In this chapter we survey some developments in topological duality theory and the theory of completions for lattices with additional operations paying special attention to various classes of residuated lattices which play a central role in substructural logic. We hope this chapter will serve as an introduction and invitation to these subjects for researchers and students interested in residuate...
متن کاملL-Topological Spaces Based on Residuated Lattices
In this paper, we introduce the notion of L-topological spaces based on a complete bounded integral residuated lattice and discuss some properties of interior and left (right) closure operators.
متن کامل